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Abstract.  19 

Environmental change is accelerating in the 21
st
 century, but how multiple drivers may interact 20 

to alter forest resilience remains uncertain. In forests affected by large high-severity 21 

disturbances, tree regeneration is a resilience linchpin that shapes successional trajectories for 22 

decades. We modeled stands of two widespread western US conifers, Douglas-fir (Pseudotsuga 23 

menziesii var. glauca) and lodgepole pine (Pinus contorta var. latifolia), in Yellowstone National 24 

Park (Wyoming, USA) to ask: (1) What combinations of distance to seed source, fire return 25 

interval and warming-drying conditions cause postfire tree-regeneration failure?  (2) If postfire 26 

tree regeneration was successful, how does early tree density differ under future climate relative 27 

to historical climate? We conducted a stand-level (1 ha) factorial simulation experiment using 28 

the individual-based forest process model iLand to identify combinations of fire return interval 29 

(11 to 100 years), distance to seed source (50 to 1000 m), and climate (historical, mid-21
st
 30 

century, late-21
st
 century) where trees failed to regenerate by 30-years postfire. If regeneration 31 

was successful, we compared stand densities between climate periods. Simulated postfire 32 

regeneration were surprisingly resilient to changing climate and fire drivers. Douglas-fir 33 

regeneration failed more frequently (55%) than lodgepole pine (28% and 16% for non-serotinous 34 

and serotinous stands, respectively). Distance to seed source was an important driver of 35 

regeneration failure for Douglas-fir and non-serotinous lodgepole pine; regeneration never failed 36 

when stands were 50 m from a seed source and nearly always failed when stands were 1 km 37 

away. Regeneration of serotinous lodgepole pine only failed when fire return intervals were ≤ 20 38 

years and stands were far (1 km) from a seed source. Warming climate increased regeneration 39 

success for Douglas-fir but did not affect lodgepole pine. If regeneration was successful, postfire 40 

density varied with climate. Douglas-fir and serotinous lodgepole pine regeneration density both 41 
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increased under 21
st
-century climate but in response to different climate variables (growing 42 

season length vs cold limitation). Results suggest that given a warmer future with larger and 43 

more frequent fires, a greater number of stands that fail to regenerate after fires combined with 44 

increasing density in stands where regeneration is successful could produce a more coarse-45 

grained forest landscape.  46 

Keywords: Climate change; Drought; Forest resilience; Process-based modeling; Seedling 47 

establishment; Wildfire; Succession; Yellowstone National Park 48 

INTRODUCTION 49 

Forests will experience increased stress as environmental change accelerates in the 21
st
 century 50 

(Millar and Stephenson 2015, Trumbore et al. 2015). It remains poorly resolved whether forests 51 

will prove resilient and recover from these perturbations (Scheffer 2009) or instead transition to 52 

alternate states (Ghazoul et al. 2015, Reyer et al. 2015). Resilience is defined as the capacity of a 53 

system to absorb disturbances while retaining function, structure, feedbacks, and thus, identity 54 

(Walker et al. 2006). It is plausible that whole forested regions, such as the Amazon and boreal 55 

forest, may prove vulnerable to environmental change (Lenton et al. 2008, Hirota et al. 2011, 56 

Scheffer et al. 2012, Gauthier et al. 2015). Yet, quantifying forest resilience is challenging 57 

because multiple drivers, like natural disturbances, drought, land use, and nitrogen deposition 58 

will act on forests simultaneously, causing compound effects that are difficult to anticipate 59 

(Paine et al. 1998, Savage and Mast 2005, Staal et al. 2014, Buma 2015, Littell et al. 2016). 60 

Further, heterogeneity in abiotic conditions (e.g., substrate, elevation, aspect) and variation in 61 

tree functional traits (among and within species) can amplify or dampen driver effects (Lamont 62 

and Enright 2000, Chmura et al. 2011, Hoffmann et al. 2012, Johnstone et al. 2016). Thus, 63 
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studies identifying interactions among multiple drivers that influence forest resilience could yield 64 

substantial insight into how and why 21
st
-century forests may change. 65 

Regional forest change will likely emerge from the effects of environmental drivers on 66 

local- and landscape-scale processes (e.g., dispersal, seedling establishment, tree growth, 67 

competition, and mortality) (Peters et al. 2004, 2007, Turner 2010). In forests where large 68 

wildfires kill most trees (i.e., stand-replacing fire), tree regeneration is a resilience linchpin 69 

(Turner et al. 1998, Johnstone and Chapin 2006, Johnstone et al. 2010, Savage et al. 2013) 70 

because seedling establishment in the first few years after disturbance dictates species 71 

composition and stand structure for decades to centuries (Kashian et al. 2005, Martínez-Vilalta 72 

and Lloret 2016). Robust postfire tree regeneration requires sufficient seed supply and delivery. 73 

Fire activity is projected to increase globally (Pechony and Shindell 2010, Seidl et al. 2014, 74 

2017, Abatzoglou and Williams 2016) and postfire seedling densities may be reduced if burned 75 

patch sizes exceed effective dispersal distances or if multiple fires reoccur before trees reach 76 

reproductive maturity (Keeley et al. 1999, Enright et al. 2014, 2015, Kemp et al. 2016, Harvey et 77 

al. 2016a, Johnstone et al. 2016, Stevens-Rumann and Morgan 2016, Chambers et al. 2016). 78 

When seed is available, changing climate can also shape regeneration outcomes because tree 79 

seedlings are very sensitive to environmental conditions (Walck et al. 2011). Warming could 80 

reduce establishment if severe droughts follow fires (Clark et al. 2016, Harvey et al. 2016a) or 81 

warming could enhance establishment by reducing frost damage (Inouye 2000) and lengthening 82 

the growing season. 83 

It is challenging to disentangle the effects of multiple drivers on postfire regeneration, but 84 

process-based models offer a promising approach when empirical studies cannot capture the full 85 

range of potential conditions. Large, short-interval fires and severe postfire droughts may 86 
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become more prevalent in the western US (Westerling 2016) but still occur infrequently in 87 

subalpine forests. Thus, opportunities to observe in the field how combinations of changing fire 88 

and drought affect tree regeneration across heterogeneous landscapes are scant. Further, the 89 

magnitude of projected 21
st
-century environmental changes, their complex interactions, and the 90 

potential for emergent feedbacks suggest that future ecosystem dynamics may be difficult to 91 

predict solely based on current observation (Gustafson 2013, Bowman et al. 2015). However, 92 

process-based models allow exploration of a more complete set of conditions than found in the 93 

field and should provide robust projections under novel conditions because they are based on 94 

ecological first principles rather than empirical relationships (Seidl et al. 2011, Keane et al. 2015, 95 

Gustafson 2013). Models also can help distill complex phenomena down to essential components 96 

and highlight gaps in ecological understanding (Grimm and Berger 2016, Dietze 2017, Seidl 97 

2017). 98 

 Yellowstone National Park (Wyoming, USA) is an excellent place to study how changing 99 

climate and fire regimes may alter postfire tree regeneration. Subalpine forests dominated by 100 

lodgepole pine (Pinus contorta var. latifolia) experienced large stand-replacing fires at 100 to 101 

300 year intervals during the Holocene (Millspaugh et al. 2000, Power et al. 2011). Postfire tree 102 

regeneration has generally been robust following fires (Turner et al. 1997, 2004, 2016). Some 103 

lodgepole pine trees in Yellowstone develop serotinous cones that remain closed and accumulate 104 

for many years; when heated by fire, they open and drop large quantities of seed. Other 105 

lodgepole pines produce only non-serotinous cones that open as they mature. (Tinker et al. 106 

1994). Lower montane forests are dominated by more drought tolerant Douglas-fir (Pseudotsuga 107 

menzieisii var. glauca). Warming and increased drought during the 21
st
 century are projected to 108 

cause marked increases in the size, severity, and frequency of wildfires (Westerling et al. 2011) 109 
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and alter the environmental context in which trees reestablish. The magnitude of expected 110 

change may be inconsistent with current forest structure and tree-species composition, meaning 111 

that forests could change profoundly (Hansen and Phillips 2015, Clark et al. 2017). 112 

We conducted a factorial simulation experiment to evaluate effects of changing fire 113 

regimes and postfire climate conditions in Yellowstone on regeneration of two widespread 114 

Rocky-mountain conifer tree species, lodgepole pine and Douglas-fir. We asked two questions. 115 

(1) What combinations of distance to seed source, fire return interval (FRI) and warming-drying 116 

conditions cause postfire tree-regeneration failure? We hypothesized that postfire regeneration 117 

failure would be more likely if seed delivery was reduced by increasing distance to seed source 118 

(i.e., a proxy of increasing fire size or changing perimeter shape), if seed supply decreased with 119 

shortened FRI because trees burned before reaching maturity, or if postfire drought reduced 120 

seedling establishment (Table 1). We also expected that lodgepole pine and Douglas-fir would 121 

differ in their responses. We hypothesized Douglas-fir regeneration would be most sensitive to 122 

distance to seed source because Douglas-fir produce fewer relatively heavy seeds and rely on 123 

adjacent unburned forests for seed delivery; non-serotinous lodgepole pine regeneration would 124 

show intermediate sensitivity because they produce a greater number of lighter seeds; and 125 

serotinous lodgepole pine regeneration would be least sensitive due to the canopy seedbank. 126 

However, we expected serotinous lodgepole pine to be very sensitive to shortened FRIs that burn 127 

stands before the canopy seedbank develops. (2) If postfire tree regeneration was successful, 128 

how does early postfire tree density differ under future climate relative to historical climate? We 129 

hypothesized that, once trees established, their postfire densities would be sensitive to variation 130 

in climate such that increasing drought frequency and severity would be associated with reduced 131 

tree density. We also expected that early postfire Douglas-fir densities would be less affected by 132 
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future drought than lodgepole pine because Douglas-fir are physiologically adapted to drier 133 

conditions. 134 

STUDY AREA AND METHODS 135 

Study area 136 

Yellowstone National Park encompasses approximately 9,000 km
2
 in northwestern 137 

Wyoming, USA. Elevation ranges from 1,600 m to 3,400 m, with lower tree line at 1,800 m and 138 

upper tree line at 3,050 m (Despain 1990). Climate is relatively warm and dry in the lower 139 

montane zone where Douglas-fir is common, with a mean July temperature of 17.5°C and 390 140 

mm of annual precipitation (Western Regional Climate Center 2017). Climate is cooler and 141 

wetter in the higher-elevation subalpine zone, with a mean July temperature of 14°C and annual 142 

precipitation of 584 mm. Forest soils are generally derived from volcanic parent material, 143 

typically rhyolite or andesite. Rhyolite-derived soils have less mineral nitrogen (Whitlock 1993) 144 

and poor water holding capacity (Simard et al. 2012) compared to soils derived from andesite 145 

(Despain 1990), but both are considered infertile. Douglas-fir and lodgepole pine are obligate 146 

seeders, and in Yellowstone, both experience stand-replacing fire. Seeds are wind dispersed, and 147 

most seeds fall within 100 m of the source (Burns and Honkala 1990). Following the iconic 1988 148 

Yellowstone fires, which burned two-thirds of the park, Douglas-fir and lodgepole pine both 149 

reestablished successfully, albeit with substantial variability across the landscape. Early (24 year) 150 

post-1988 fire Douglas-fir stand densities ranged from 0 to 19,667 stems ha
-1

 with a median of 151 

1,250 stems ha
 -1

 (Donato et al. 2016); postfire (24 year) lodgepole pine densities ranged widely, 152 

from 0 to >340,000 stems ha
-1 

with a median density of 4,050 stems ha
-1

 (Turner et al. 2016). 153 

Stands where prefire serotiny was high account for the denser postfire regeneration. Stands 154 

Page 15 of 62 Ecology



For Review Only

 

8 

 

where prefire serotiny was low had postfire densities ranging from 600 to 2,300 stems ha
-1

 155 

(Turner et al. 1997, 2004).  156 

Model overview and simulation experiment 157 

 We simulated stand-level (1-ha) dynamics using an individual-based forest process 158 

model, iLand (Seidl et al. 2012, 2014). iLand simulates trees within a stand and uses a 159 

hierarchical framework wherein broader-scale processes emerge dynamically from interactions 160 

among individual trees (Seidl et al. 2012). iLand represents tree growth, mortality, and 161 

competition in response to canopy light interception, radiation, thermal conditions, soil water, 162 

and nutrient limitation. While climate and soil conditions are assumed to be spatially 163 

homogeneous within a stand (1 ha), variation in light is simulated at 2×2m horizontal resolution 164 

based on overstory structure and composition. Climate variability is considered at a daily 165 

temporal grain. iLand also simulates disturbances. Extensive model documentation is available 166 

online (http://iland.boku.ac.at). The model has been well tested and extensively used in the 167 

western United States (Seidl et al. 2012, 2014) and Europe (Pedro et al. 2015, Thom et al. 2017a, 168 

2017b), and has recently been parameterized and evaluated for Yellowstone (a full parameter set 169 

is available online: www.github.com/whansen3/Hansen_stand_level_archive). 170 

The model explicitly simulates tree regeneration based on seed production, seed 171 

dispersal, and effects of temperature, light, and soil-moisture conditions on seedling 172 

establishment and survival (Seidl et al. 2012) (Appendix S1). We extended the regeneration 173 

module of iLand in two ways. First, we added serotiny as a functional trait for lodgepole pine. 174 

Serotinous lodgepole pine only drop seeds in the year following a fire. When trees are 175 

serotinous, the amount of seed released is a multiple of the seeds produced by a non-serotinous 176 

tree, representing the accumulation of cones over multiple years. We further incorporated an 177 
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effect of soil moisture on rates of seedling establishment in addition to the already existing 178 

temperature limitation. The probability of seedling establishment at a 2m cell is linearly scaled 179 

between a species-specific minimum soil water potential, where establishment does not occur, 180 

and field capacity, where establishment is not constrained by soil moisture. We evaluated the 181 

improved regeneration module of iLand and simulated tree establishment agreed well with 182 

independent field observations (Appendix S2).  183 

Initial stand structure. Simulations were initialized with a representive monospecific 184 

stand for each forest type using median stem density and tree heights for each forest type as 185 

recorded 11 years after the 1988 Yellowstone fires (Turner et al. 1999, 2004, 2016, Donato et al. 186 

2016). We chose not to vary initial stand structure within each forest type because we were 187 

interested in experimentally testing climate-fire interactions and therefore we minimized other 188 

sources of variation. 189 

Topoedaphic conditions. Our simulations did include variation in substrate and elevation, 190 

because both influence tree establishment, and thus, are important for addressing our questions. 191 

We simulated soils derived from two volcanic parent materials, rhyolite and andesite, which 192 

account for most of Yellowstone’s subalpine landscape (Despain 1990). Relative fertility rating 193 

(calibrated within iLand to 45 and 55 for rhyolite and andesite, respectively, on a [0-100] scale) 194 

and soil texture (62% sand, 30% silt, 8% clay for rhyolite, 51% sand, 37% silt, 12% clay for 195 

andesite) were set according to representative soil surveys conducted throughout Yellowstone 196 

(Turner et al. 1999, Simard et al. 2012). For all soils, effective depth was set to 95 cm. Elevation 197 

was included by simulating stands at lower treeline (2,000 m), as well as the mid (2,300 m), and 198 

high elevation (2,600 m) of the subalpine zone. These span the elevational range in which 199 

Douglas-fir and lodgepole pine are found regionally. 200 
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Factorial simulation experiment. We conducted a factorial experiment using iLand to 201 

evaluate how combinations of climate and fire conditions affected early (30 year) postfire tree 202 

regeneration of Douglas-fir, non-serotinous lodgepole pine, and serotinous lodgepole pine. 203 

Thirty years was selected as a benchmark for assessing regeneration because it accommodates 204 

the more protracted establishment window of conifers that lack a canopy seedbank (Turner et al. 205 

1999, Donato et al. 2016), captures longer-term effects of climate on young trees, and largely 206 

avoids the self-thinning that occurs in dense stands during later periods of stand development. 207 

The factors considered in the experiment for all forest types were FRI, distance to seed source, 208 

and variation in climate and they were applied to every combination of the two substrates and 209 

three elevations. 210 

Return interval for high-severity fire. Effects of FRI were simulated by burning stands at 211 

age 11, 20, 50, or 100 yrs. Simulated FRI spanned the range from short-interval fires projected 212 

by the end of the 21
st
 century (Westerling et al. 2011) and observed in Yellowstone (e.g., the 213 

2000 Boundary Fire burned 12-yr old lodgepole pine that regenerated from the 1988 fires) to the 214 

lower end of FRIs observed during the Holocene (Millspaugh et al. 2000). Stand development 215 

was simulated until the specified FRI was reached, at which time stand-replacing fire killed all 216 

prefire trees, saplings, and seedlings. 217 

Distance to seed source. We simulated stands at distances of 50 m, 500 m and 1 km from 218 

the nearest unburned seed source which could either represent forest at the fire edge or islands of 219 

unburned forest in the middle of burned patches. In actual fires, distance to seed source is 220 

primarily a function of the size and shape of high-severity burned patches. Seed supply and 221 

dispersal were modeled with species-specific negative exponential dispersal kernels and 222 

compared with field surveys (Appendix S1, S2). 223 
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Variation in climate. Effects of climate were simulated by driving the model with climate 224 

from three 30-year periods. We used a historical period (1950 to 1980) and two levels of climate 225 

change that represented a temperature increase of 3 and 5.5 °C, indicative of mid-century (2029-226 

2059) and late-century (2069-2099) warming under the Representative Concentration Pathway 227 

(RCP) 8.5. The RCP 8.5 scenario represents a substantial increase in CO2 over the next 100 228 

years, although current trends suggest this emissions scenario is already being exceeded (Smith 229 

et al. 2016). We used the CNRM-CM5 global circulation model (GCM) (Voldoire et al. 2013), 230 

which reproduces historical conditions in the northern Rockies well (Westerling et al. 2011). 231 

Climate variables that drive iLand simulations include maximum and minimum daily 232 

temperature, daily precipitation, radiation, and vapor pressure deficit. Climate data were 233 

statistically downscaled to a 4-km resolution using the Multivariate Adaptive Constructed 234 

Analogs approach (Abatzoglou and Brown 2012) (URL: 235 

http://maca.northwestknowledge.net/index.php). Data were extracted for one grid cell per 236 

elevation that corresponded to a median density field plot. We chose only one grid cell per 237 

elevation because we were not attempting to characterize effects of climate variation within 238 

elevation bands, but rather across the elevational range of the species’ current distributions.  239 

Replication. Simulations were each run 20 times and years were drawn randomly with 240 

replacement from the appropriate 30-year climate record to ensure the order of the climate record 241 

did not influence simulation results. This led to 20 replicates of each forest type (3 levels), 242 

substrate (2 levels), elevation (3 levels), FRI (4 levels), distance to seed source (3 levels) and 243 

climate (3 levels) combination. 244 

Model outputs 245 
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 We focused on two model outputs: frequency of regeneration failure at 30 years postfire 246 

(Question 1) and, if regeneration was successful during the historical climate period, the 247 

difference in mean tree density between historical and projected 21
st
-century climate (Question 248 

2). Regeneration failure was defined as stands that had < 50 stems ha
-1

 (including seedlings, 249 

saplings, and young trees) at postfire-year 30, which would indicate potential transition to a non-250 

forest condition. The United Nations Food and Agricultural Organization (FAO) defines forest as 251 

any area > 0.5 ha that has > 10% canopy cover (Chazdon et al. 2016). Our threshold of 50 stems 252 

ha
-1

 in Yellowstone would fall well below the FAO definition, and such densities are 253 

considerably lower than those commonly observed following recent fires in Yellowstone. For 254 

example, only 1.4% of early postfire (24 year) stands had densities < 50 stems ha
-1

 after the 1988 255 

Yellowstone fires (Turner et al. 2016). We then calculated the frequency of regeneration failure 256 

across the 20 replicates of each simulation. If regeneration was successful (i.e., > 50 trees ha
-1

) 257 

during the historical climate period, we calculated the difference in mean 30-yr postfire stem 258 

density between the historical and each projected 21
st
-century climate period.  259 

Data analysis 260 

To address Question 1 (regeneration frequency), we first used ANOVA to explain factors 261 

influencing the frequency of regeneration failure based on the levels of each treatment in the 262 

simulation experiment. We conducted analyses separately by forest type. We then explored the 263 

influences of climate in more detail, applying linear mixed-effects models (LMMs). We included 264 

mean growing-season temperature, mean annual precipitation, mean growing season soil water 265 

potential, and number of growing season frost events as fixed-effects. Random effects included 266 

non-climate related treatment-level variables (i.e., distance to seed source and fire return 267 

interval). This approach allowed us to ask, controlling for non-climate related factors, what 268 
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specific climate variables explained variation in response variables? We used the lme4 package 269 

in R (Bates et al. 2015) and all explanatory variables were assessed for collinearity. Variables 270 

were not included in the same model if they had a pairwise correlation of greater than 0.7. The 271 

dependent variable was transformed using a logit transformation. In regressions, all continuous 272 

variables were standardized prior to analysis. Exhaustive model selection (Burnham and 273 

Anderson 2002) was conducted in all analyses (ANOVA and LMM) to determine the most 274 

important variables using the R package MuMIn (Barton, 2015). Top models (AICc<2) are 275 

presented for ANOVA and model-averages are presented for LMMs. Analyses were conducted 276 

in R statistical software (R Core Team 2016).  277 

To address Question 2 (density differences), we first used ANOVA to explain differences 278 

in stand densities between the 21
st
 century and historical periods, when regeneration was 279 

successful, for each forest type. We then used LMMs to identify climate variables that explained 280 

treatment level effects (as described above). A √
�

	 transformation was applied to the dependent 281 

variable for serotinous lodgepole pine so that residuals were approximately normally distributed. 282 

All statistical analyses were conducted to efficiently find patterns in the simulated data as 283 

opposed to determine statistical significance. Thus, in results the magnitudes of difference 284 

between treatments are emphasized. In the text, means ± one stand error are presented. 285 

RESULTS 286 

 Across all simulations, Douglas-fir densities at postfire year 30 ranged from 0 to 21,186 287 

stems ha
-1 

(mean = 2,677 ± 327 stems ha
-1

, median = 132 stems ha
-1

). Non-serotinous lodgepole 288 

pine densities ranged from 3 to 3,197 stems ha
-1 

(mean = 815 ± 62 stems ha
-1

, median = 412 289 

stems ha
-1

). Serotinous lodgepole pine densities were between 7 and 93,972 stems ha
-1 

(mean = 290 

23,120 ± 1,730 stems ha
-1

, median = 4,569 stems ha
-1

). Simulated stand densities of these forest 291 
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types closely matched field observations of postfire densities in Yellowstone (Donato et al. 2016, 292 

Turner et al. 2016) (Appendix S2). In general, simulated densities decreased with distance to 293 

seed source and increased or stayed the same under 21
st
 century climate, compared with 294 

historical conditions.  295 

Frequency of regeneration failure (Question 1) 296 

Douglas-fir. Douglas-fir failed to regenerate by postfire-year 30 in 55% of the 297 

simulations (Fig. 1), primarily due to distance from seed source (Table 2A, Fig. 2A). 298 

Regeneration was always successful if stands were 50 m from a seed source and nearly always 299 

failed when stands were 1 km away (Fig. 3A). Climate period was also an important driver, with 300 

regeneration failure declining from 64 ± 6 % under historical climate to 41 ± 5% under late-21
st
 301 

century climate. When direct measures of climate were substituted for categorical variables, 302 

LMMs revealed that reduced failure of Douglas-fir regeneration in 21
st
-century climate periods 303 

was driven by fewer growing season frost events (Table 3A).  304 

Non-serotinous lodgepole pine. Non-serotinous lodgepole-pine failed to regenerate by 305 

postfire-year 30 in 28% of simulations (Fig. 1). Like Douglas-fir, regeneration failure was most 306 

strongly determined by distance to seed source (Table 2A, Fig. 2B); failure was likely when 307 

stands were 1 km from a seed source and minimal when stands were 50 or 500 m away (Fig. 308 

3B). Elevation and substrate had small effects on regeneration failure. Regeneration failure 309 

occurred more frequently at low (32%) versus high elevations (23%) and on rhyolite (29%) 310 

versus andesite substrate (26%). Climate period did not affect regeneration failure. LMMs 311 

revealed that the small effects of elevation and substrate reflected tradeoffs between drying soils, 312 

which increased regeneration failure, and reduced growing season frost events, which decreased 313 

regeneration failure (Table 3A).  314 
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Serotinous lodgepole pine. Serotinous lodgepole pine failed to regenerate by postfire-year 315 

30 in < 20% of simulations (Fig. 1). Regeneration failure was driven by distance to seed source, 316 

FRI, and their interaction (Table 2A, Fig. 2C). Regeneration failure was more frequent when 317 

stands were 1 km from seed source and FRIs were ≤ 20 years (Fig. 3C). As with non-serotinous 318 

lodgepole pine, elevation had a small effect on regeneration failure (19% at low versus 13% at 319 

high elevation), and climate period was unimportant (Table 3B). 320 

Density differences (Question 2) 321 

Douglas-fir. Where regeneration was successful under historical climate, simulated 322 

regeneration density in postfire-year 30 averaged 1,205 ± 114 stems ha
-1

. Postfire regeneration 323 

density increased nearly four fold (to 4,036 ± 411 stems ha
-1

) under mid 21
st
-century conditions 324 

and six fold (to 7,893 ± 776 stems ha
-1

) under late 21
st
-century condtions (Table 2B). Tree 325 

density increased only when stands were near (50 m) a seed source (Table 2B). Substrate also 326 

had a minor effect on density differences (Table 2B). LMMs revealed that stand densities 327 

increased with warming temperature and more precipitation (Table 3B, Fig. 4). 328 

Non-serotinous lodgepole pine. Simulated stand densities averaged 800 ± 105 stems ha
-1

 329 

in stands where regeneration was successful under historical conditions and changed little in mid 330 

(910 ± 116 stems ha
-1

) and late (790 ± 71 stems ha
-1

) 21
st
-century periods (Table 2B). Densities 331 

were also slightly greater at low elevations close to seed source (increasing to 971 ± 32 stems ha 332 

-1
) (Table 2B) but did not change at mid or high elevations. LMMs suggest decreases in annual 333 

precipitation and drying soils explained variability in stand density differences (Table 3B). 334 

Serotinous lodgepole pine. When regeneration was successful, simulated densities of 335 

serotinous lodgepole pine at postfire year 30 averaged 19,800  ± 1,929 stems ha
-1

 under historical 336 

conditions. Serotinous lodgepole pine densities increased by nearly 63% (by 12,505 ± 2,123 337 
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stems ha
-1

 to reach > 32,000 stems ha
-1

) at low elevations during 21
st
-century periods (Table 2B). 338 

Stand densities increased with a FRI of 50 years (to 31,247 ± 1,298 stems ha
-1

) or 100 years (to 339 

26,013 ± 1,566 stems ha
-1

) (Table 2B). Distance to seed source had a modest effect as well, with 340 

densities increasing to 27,900 ± 1,927 stems ha
-1

 at distances within 500 m of a seed source 341 

(Table 2B). Treatment level effects were explained by decreasing annual precipitation in the 342 

LMMs (Table 3B).  343 

DISCUSSION 344 

 Results of this study indicate that regeneration of two conifers following stand-replacing 345 

fire in subalpine forests is shaped by the complex interplay among several drivers related to 346 

future climate and fire regimes, some that constrain regeneration and others that enhance it. 347 

Overall, postfire regeneration of Doulgas-fir and lodgepole pine was surprisingly resilient to the 348 

substantial changes in climate and fire regimes projected for Yellowstone, particularly when 349 

drivers were considered individually. Simulated regeneration failure generally required multiple 350 

changing drivers (Fig. 2). Stand-level simulation experiments cannot predict how and where 351 

forests will change across the landscape, and results could differ in mixed-species stands. 352 

However, this study reveals complex responses to multiple changing drivers and offers insights 353 

into the mechanisms underpinning forest resilience (Trumbore et al. 2015, Reyer et al. 2015). 354 

What causes regeneration failure (or success?) 355 

Distance to seed source explained nearly all variation in regeneration failure for Douglas-356 

fir and non-serotinous lodgepole pine, consistent with our hypotheses (Table 1). This finding 357 

suggests there are large consequences associated with projections of increased area burned 358 

during the 21
st
 century (Westerling et al. 2011), as the size and shape of high-severity burn 359 

patches strongly determines regeneration of conifers that lack a canopy seed bank. Indeed, most 360 

Page 24 of 62Ecology



For Review Only

 

17 

 

regeneration following recent fires in the northern Rocky Mountains has occurred within 150 m 361 

of the unburned edge (Kemp et al. 2016, Donato et al. 2016, Harvey et al. 2016a). Our findings 362 

are consistent with prior studies that emphasize the importance of biotic residuals (i.e., 363 

propagules or surviving trees within large disturbed patches) for regeneration following large, 364 

infrequent disturbances (Turner et al. 1994, 1998, Franklin and Forman et al. 1987, Franklin et 365 

al. 2002, Seidl et al. 2014, Johnstone et al. 2016, Tepley et al. 2017). 366 

Regeneration failure was uncommon in serotinous lodgepole pine stands, which develop 367 

canopy seedbanks. Regeneration failure only occurred in stands far from seed source when fires 368 

burned again before the development of the canopy seed source (Fig. 2). Serotiny is an effective 369 

fire adaptation expressed in a variety of species globally (Lamont et al. 1991, He et al. 2012). 370 

Dense seed rain from cones that open after fire enables serotinous tree species to establish 371 

rapidly in postfire environments where a flush of resources is availabile and competition is low 372 

(Tinker et al. 1994, Keeley et al. 2005, Causley et al. 2016). Serotiny may also buffer against 373 

other drivers of postfire regeneration failure, including poor substrates for establishment 374 

(Johnstone and Chapin 2006, Johnstone et al. 2009), seed predation (Lamont et al. 1991; though 375 

see Benkman and Siepielski 2004), and postfire drought (Lamont and He 2017). This prolific 376 

production of seed may partly explain the lack of sensitivity to climate conditions in our 377 

simulation study. After the 1988 Yellowstone fires, postfire regeneration density in stands where 378 

prefire serotiny was high commonly exceeded 100,000 stems ha
-1

. Even if hostile conditions 379 

reduce stand density by 90% a robust forest will grow back. Serotiny can be an effective bet 380 

hedging strategy for species facing variable environments (Buma et al. 2013). 381 

Serotinous stands lose their advantage if fires reoccur before trees are reproductively 382 

mature (Buma et al. 2013, Johnstone and Chapin 2006). Thus, postfire densities of serotinous 383 
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species could be substantially reduced by short-interval fires, consistent with other systems 384 

where fire intervals are shortening (Keeley et al. 1999, Enright et al. 2015, Bowman et al. 2016). 385 

For example, serotinous black spruce (Picea mariana) seed supply was reduced 90% after short-386 

interval fires in the Yukon Territories, Canada (Brown and Johnstone 2012). However, short 387 

FRIs alone were insufficient to initiate regeneration failure of simulated serotinous lodgepole 388 

pine stands in Yellowstone; burned stands also had to be far from seed source, limiting the seed 389 

supply from neigboring unburned stands. 390 

Climate effects on regeneration failure differed by forest type. Warming enhanced 391 

Douglas-fir regeneration because frost events became less frequent during the growing season. 392 

Although growing season frost became rare in simulations under 21
st
-century conditions, 393 

warming could expose seedlings to winter frost damage if snow cover is reduced because snow 394 

insulates seedlings from temperature fluctuations (Batllori et al. 2009, Renard et al. 2016). 395 

Reductions in winter snowpack are projected to be greatest at mid elevations in Yellowstone 396 

versus high elevations, where snowpack is projected to remain consistent (Tercek and Rodman 397 

2016), or low elevations, where snow pack is already less. Winter warming could also delay 398 

sapling spring growth initiation if chilling requirements are no longer met (Ford et al. 2016). The 399 

insulating effect of snow and winter chilling is not currently represented in iLand, and further 400 

study is needed to determine how winter climate change may counter effects of declining 401 

growing season frost. 402 

Our study suggests substantial resilience of lodgepole pine stands to projected warming; 403 

non-forest states rarely occurred in the simulation with the combinations of factors considered 404 

here, although tree density could change substantially in the future (e.g., Schoennagel et al. 405 

2006). In part, this may reflect our conservative definition of regeneration failure (< 50 stems ha
-

406 
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1
 at postfire year 30) relative to the prolific regeneration capacity of lodgepole pine and its ability 407 

to produce cones at a young age (Turner et al. 2007). Our results are relatively consistent with 408 

climate suitability projections of 21
st
-century lodgepole pine and Douglas-fir distributions in 409 

Yellowstone, which suggest range reductions and distributional shifts to higher elevations. 410 

(Bartlein et al. 1997, Crookston et al. 2010, Coops and Waring 2011, Gray and Hamann 2013, 411 

Bell et al. 2014, Hansen and Phillips 2015). While our approach takes a step beyond climate 412 

suitability studies by considering the processes that are important during a sensitive life-history 413 

stage (regeneration), we still only consider the responses of individual tree species to changing 414 

climate and fire. However, the abundance and distribution of a species can be strongly shaped by 415 

competitive interactions, particularly at local to landscape scales (Copenhaver-Parry et al. 2017), 416 

and process-based models are a promising tool for determining where and why interspecific 417 

biotic interactions might modulate how tree species respond to climate change.  418 

What explains changing stand densities? 419 

Postfire stand densities for all three forest types were sensitive to both fire and climate 420 

drivers, with fire frequency and size influencing potential establishment and climate conditions 421 

largely affecting survival and growth. As hypothesized, warming led to increased density of 422 

Douglas-fir in our simulations, particularly when precipitation also increased (Fig. 4). 423 

Densification of Douglas-fir regeneration under warmer climate is consistent with expectations 424 

for a tree species at the leading edge of its distribution (Hansen and Phillips 2015) and with the 425 

fossil pollen record in Yellowstone. Conditions were warmer than present during the early to mid 426 

Holocene, and Douglas-fir expanded to higher elevations—but only on andesite substrate 427 

(Whitlock 1993). The lack of edaphic constraints on Douglas-fir regeneration in our simulations 428 
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suggests other factors (e.g., competition among tree species) may have shaped Douglas-fir 429 

distributions in response to past climate variation. 430 

Postfire lodgepole pine stand density was influenced by multiple climate factors, acting 431 

in opposing directions. Decreasing annual precipitation, which mainly falls as snow in 432 

Yellowstone, increased lodgepole pine densities. Reduced spring snowpack can lead to increased 433 

early postfire densities of tree species by lengthening growing seasons (Hansen et al. 2016), 434 

when there is sufficient soil moisture and little frost damage. However, soil drying decreased 435 

non-serotinous lodgepole pine densities. Effects of soil drying on lodgepole pine seedlings are 436 

well documented. Stand densities were subtantially reduced in the northern Rockies when recent 437 

fires were followed by hot-dry versus cool-wet conditions (Harvey et al. 2016a). Disentangling 438 

effects of opposing climate drivers of postfire regeneration could be explored more fully with 439 

experimental approaches. 440 

Considered together, our simulations of postfire regeneration suggest that forest-441 

landscape patterns could become increasingly coarse-grained in the future, as climate changes 442 

and fires become larger and more frequent. The number and size of non-forest patches could 443 

increase, due to regeneration failure, but the surrounding forests may actually become more 444 

dense. This could have important consequences for forest susceptability to subsequent 445 

disturbance agents (Seidl et al. 2016a) and the provision of ecosystem services (Turner et al. 446 

2013, Spies et al. 2017). Changes in spatial patterns of forest cover and structure could also be 447 

sensitive indicators of forest resilience (Scheffer et al. 2012, Ghazoul et al. 2015, Seidl et al. 448 

2016b). Increased regeneration failure over multiple fire cycles or shifting spatial patterns can 449 

indicate slowing of ecosystem recovery and impending transitions to alternate states (Kéfi et al. 450 

2007, Dakos et al. 2011, Ghazoul and Chazdon 2017, Walker et al. 2016). Establishing resilience 451 
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indicators for forest systems is particularly important because forests can respond slowly to 452 

drivers, and marginal changes may go unrecognized if postfire recovery dynamics are not 453 

monitored through time (Hughes et al. 2013, Paine et al. 1998, Lindenmayer et al. 2016). 454 

Conclusions 455 

Tree regeneration is a resilience linchpin in forests where large high-severity disturbances 456 

occur (Gauthier et al. 2015, Johnstone et al. 2016, Turetsky et al. 2016). Simulated postfire 457 

regeneration of two widespread subalpine conifers was surprisingly resilient to future climate 458 

and fire regimes. Multiple drivers were often required for regeneration to fail – distance to seed 459 

source, paired with cold temperature for Douglas-fir or with short FRIs for serotinous lodgepole 460 

pine (Fig. 2) – and such relationships may well apply to other obligate seeders. It appears that the 461 

indirect effects of 21
st
-century warming, causing an increase in the size and frequency of stand-462 

replacing fire (Westerling et al. 2011, Harvey et al. 2016b), could exceed the direct effects of 463 

warming on early postfire conifer regeneration in Yellowstone. 464 
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Tables 799 

Table 1. Hypotheses of how changing climate and fire regimes will interact to cause postfire 800 

regeneration failure in subalpine forest types found throughout western North America (adapted 801 

from Johnstone et al. 2016).  802 

Process Driver Hypothesized mechanism Citations 

Seed supply Fire return 

interval 

If fires become more frequent and sequential fires 

occur before trees mature, then postfire regeneration 

will be constrained. Serotinous lodgepole pine may 

be particularly vulnerable due to reliance on an in 

situ seedbank. 

 

Buma et al. 2013 

Seed delivery Distance to 

seed source 

If patches of stand-replacing fire exceed seed 

dispersal distances, postfire regeneration may be 

constrained, especially in the middle of large 

burned patches. Non-serotinous lodgepole and 

Douglas-fir may be particularly vulnerable due to 

their reliance on unburned trees as a seed source. 

 

Harvey et al. 2016a, 

Turner et al. 1999, 

2004, 2016 

Seedling 

establishment 

Postfire 

drought 

If drought occurs in the first few years postfire, 

seedling establishment may be reduced even if seed 

is abundant. Lower montane sites, which are 

already warmer and drier, may be especially 

vulnerable to drought. 

Harvey et al. 2016a 

 803 

804 
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Table 2. ANOVA results of top models (AICc < 2) predicting A. frequency of regeneration 805 

failure and B. Density differences between 21
st
-century and historical periods, if regeneration 806 

was successful. Regeneration failure frequency was logit transformed. Density differences for 807 

serotinous lodgepole pine was transformed to the √
�

. Sum of squares, F-values, significance 808 

levels and model adjusted R
2 

are presented. 809 

 

Douglas-fir 

Non-serotinous 

lodgpeole pine 

Serotinous  

Lodgepole pine 

 Model 1 Model 2 Model 3 Model 1 Model 1 

A. Regeneration failure      

Distance to seed source 

3,843.8*** 

2,634.9 

3,877.9*** 

2,634.9 

3,846.9*** 

2,634.9 

2,503.4*** 

1,868.7 

519.0*** 

667.7 

Climate Period 

165.8*** 

113.7 

167.3*** 

113.7 

165.9*** 

113.7 

  

FRI   

  68.1*** 

131.4 

Elevation  

1.9 

1.3 

 41.4*** 

30.9 

16.8*** 

21.6 

Substrate   

1.2 

0.4 

16.3*** 

6.1 

 

Distance x Climate 

period 

58.3*** 

79.9 

58.8*** 

79.9 

58.3*** 

79.9 

  

Distance x FRI   

  61.9*** 

238.9 

Distance x Elevation   

 16.3*** 

24.3 

 

Adj. R
2 

0.97 0.97 0.97 0.96 0.88 
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B. Density differences      

Distance to seed source 

1,225.6*** 

1.7x10
9 

 

 28.0*** 

1.1x10
6 

30.8*** 

94.5 

Climate Period 

192.9*** 

2.7x10
8
 

 

 27.1*** 

5.1x10
5 

 

FRI   

  31.1*** 

142.9 

Elevation   

 24.2*** 

9.1x10
5 

57.3*** 

175.6 

Substrate 

22.4*** 

3.2x10
7 

 

   

Distance x Climate 

period 

176.8*** 

2.5x10
8 

 

   

Elevation x FRI   

  14.4*** 

132.9 

Distance x Elevation   

 17.5*** 

1.3x10
6 

 

Adj. R
2 

0.95   0.58 0.71 

*p<0.05, **p<0.01, ***p<0.001 810 

  811 
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Table 3. Averaged Linear mixed effects regression results of top models (AICc < 2) predicting 812 

A. frequency of regeneration failure and B. density differences between 21
st
 century and 813 

historical periods, if regeneration was successful. Regeneration failure frequency was logit 814 

transformed. Density differences for serotinous lodgepole pine was transformed to the √
�

. 815 

Coefficients of all continuous variables were standardized to z-scores and significance levels are 816 

presented for fixed effects. Standard deviations are presented for random effects  817 

 

Douglas-fir 

Non-serotinous 

lodgepole pine 

Serotinous 

lodgepole pine 

A. Regeneration failure    

Fixed effects    

Intercept 0.02 -0.003 -0.004 

Growing season frost events 0.16*** 0.09** 0.14** 

Growing season soil water potential  -0.11*** -0.04 

Growing season temperature -0.06**   

Annual precipitation  -0.01 -0.04 

Frost events x temperature 0.03   

Frost events x soil water potential   -0.03 

Frost events x Precipitation  -0.006 -0.02 

Random effects     

FRI   0.37 

Distance to seed source 0.95 0.96 0.76 

B. Density differences    

Fixed effects    

Intercept -0.16 0.14 0.06 

Growing season frost events  0.14 0.07 

Growing season soil water potential  0.30** -0.01 
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Growing season temperature 0.47***   

Annual precipitation 0.41*** -0.54*** -0.41*** 

Precipitation: Temperature -0.14*   

Frost events: Precipitation  0.22** 0.07 

Frost events: soil water potential   0.04 

Precipitation: soil water potential   -0.02 

Random effects    

FRI  0.26 0.45 

Distance to seed source 0.83 0.37 0.38 

*p<0.05, **p<0.01, ***p<0.001 818 

  819 
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Figure legends 820 

Figure 1. Frequency of regeneration failure (%) at postfire-year 30 for Douglas-fir (DF), non-821 

serotinous lodgepole pine (LP-NS) and serotinous lodgepole pine (LP-S) across all simulations. 822 

Values are means ± 2 standard errors. 823 

Figure 2. State space conceptually summarizing conditions that led to postfire-year 30 tree 824 

regeneration failure (orange) and success (green) as a function of distance to seed source, fire 825 

return interval, and climate period for (A) Douglas-fir, (B) non-serotinous lodgepole pine, (C) 826 

serotinous lodgepole pine, three widespread forest types in Rocky Mountain forests. 827 

Figure 3. Frequency of regeneration failure (%) at postfire-year 30 as a function of distance from 828 

seed source and fire return interval (FRI) for (A) Douglas-fir, (B) non-serotinous lodgepole pine, 829 

(C) serotinous lodgepole pine. Values are means ± 2 standard errors. 830 

Figure 4. Differences in early postfire (30 year) Douglas-fir stand density between historical and 831 

21
st
-century climate periods versus 21

st
 century annual precipitation (mm) and growing season 832 

mean temperature (°C). Values are predictions from a loess fit. 833 
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Figure 1. Frequency of regeneration failure (%) at postfire-year 30 for Douglas-fir (DF), non-serotinous 
lodgepole pine (LP-NS) and serotinous lodgepole pine (LP-S) across all simulations. Values are means ± 2 

standard errors.  
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Figure 2. State space conceptually summarizing conditions that led to postfire-year 30 tree regeneration 
failure (orange) and success (green) as a function of distance to seed source, fire return interval, and 

climate period for (A) Douglas-fir, (B) non-serotinous lodgepole pine, (C) serotinous lodgepole pine, three 
widespread forest types in Rocky Mountain forests.interval, and climate period for (A) Douglas-fir, (B) non-
serotinous lodgepole pine, (C) serotinous lodgepole pine, three widespread forest types in Rocky Mountain 

forests. Grey scale version available for print.  
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Figure 3. Frequency of regeneration failure (%) at postfire-year 30 as a function of distance from seed 
source and fire return interval (FRI) for (A) Douglas-fir, (B) non-serotinous lodgepole pine, (C) serotinous 

lodgepole pine. Values are means ± 2 standard errors. Grey scale version available for print.  
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Figure 4. Differences in early postfire (30 year) Douglas-fir stand density between historical and 21st-
century climate periods versus 21st century annual precipitation (mm) and growing season mean 

temperature (°C). Values are predictions from a loess fit. Only color available.  

 
89x70mm (600 x 600 DPI)  

 

 

Page 54 of 62Ecology



For Review Only

1 

 

Appendix S1 1 

Table S1. iLand regeneration module parameters used to explore effects of changing fire regimes and 2 

postfire warming/drying on tree regeneration of and Douglas-fir (DF), non-serotinous lodgepole pine (LP-3 

NS), and serotinous lodgepole pine (LP-S) stands in Yellowstone National Park, Wyoming, USA. 4 

Extensive model documentation is available at (http://iland.boku.ac.at/iLand+Hub) and a full parameter 5 

set is available at (https://github.com/whansen3/Hansen_stand_level_archive). 6 

Parameter name Units Source LP-

NS 
LP-S DF 

Seed production/ dispersal      

Cone bearing age years 8, 10, 12-13 15 15 55 
Seed year interval years 9, 10, 12; 14-19  1 1 5 
Non- seed year fraction dim[0,1] 9, 10, 12; 14-19  0 0 0.24 
Seed mass mg 10, 11, 12, 4.1 4.1 11.31 
Germination rate dim[0,1] 49, 20-24  0.36 0.36 0.30 
Fecundity sdlings m

-2
  24-25 115.9 115.9 43.9 

Seed kernel a m 10, 26-30  6 6 30 
Seed kernel b m 10, 26-30 160 160 200 
Seed kernel c dim[0,1] 1 0.05 0.05 0.2 

Establishment      

Min temperature °C 31 -85 -85 -37 
Chill requirement days 31 63 63 56 
Min growing degree days degree days 31 186 186 340 
Max growing degree days degree days 31 3374 3374 3261 
Growing degree days base 

temperature 
°C 31 

2.9 2.9 3.4 

Growing degree days bud 

burst 
degree days 31 

116 116 255 

Frost free days days 31 80 80 100 
Frost tolerance dim[0,1] 31 0.9 0.9 0.5 
Min soil water potential MPa 31 -2.3 -2.3 -7 

Sapling growth      
Sapling growth a dim 2,3-7, 32-41 0.05 0.05 0.036 
Sapling growth b m 2,3-7, 32-41 24 24 47 

Max number of years 

under stress 
years This paper 

2 2 3 

Stress threshold dim[0,1] 34 0.2 0.2 0.05 
Height to diameter ratio dim 2, 3, 5, 7 72 72 88 
Reineke’s R saplings ha

-

1 
2, 3, 5, 7, 34 

14.33 550 500 

Reference ratio dim[0,1] This paper 0.457 0.457 0.451 

Serotiny      
Serotiny formula dim[0,1] 3  x,20,0,80,1  
Serotiny fecundity  3  30  

 7 

  8 
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Appendix S2.  1 

We evaluated how well iLand simulated variation in early postfire lodgepole pine and Douglas-2 

fir densities as a function of distance to seed source based on species specific dispersal kernels 3 

(Table S1). We compared simulated densities at 50 m, 500 m, and 1 km with early post fire stand 4 

densities measured in field surveys throughout Yellowstone (Donato et al. 2016, Harvey et al. 5 

2016a). Stem densities from field surveys declined with distance to seed source and closely 6 

matched simulated densities (Fig. S1). Douglas-fir densities declined more quickly than 7 

lodgepole-pine densities and no Douglas-fir seedlings established 1 km from seed source in 8 

either field surveys or simulations.   9 

  10 
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Figure S1. Early postfire densities of Douglas-fir and lodgepole pine stands as a function of 11 

distance to seed source in (A) field surveys after recent fires in greater Yellowstone (Harvey et 12 

al. 2016a, Donato et al. 2016), (B) simulations in iLand.  13 

 14 
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